Lorsqu'un utilisateur doit mettre en œuvre des mesures de température dans un process, il est assez fréquent qu'il doive se pencher sur la question du puits thermométrique qui devra être monté dans la canalisation, en garantissant l'étanchéité, et positionné de telle manière à ce que la sonde soit au cœur même de l'écoulement du fluide. Compte tenu de la fragilité des sondes, que ce soit des résistances de platine ou des thermocouples, vis-à-vis de la nature même du fluide à mesurer et/ou des conditions de service (température, pression, débit…), on doit en effet installer une barrière entre la sonde de tempé-rature et le procédé. Cette protection d'un point de vue mécanique, par exemple en cas d'écoulement important, de fluide chargé, etc. ( voir Mesures n° 835 ), est un tube dans lequel se trouve l'élément sensible;diffé-rentes désignations existent : puits thermométrique, doigt de gant, thermowell en anglais. Un puits peut être foré dans la masse ou mécano-soudé, en céramique, en métal ou en d'autres métaux pour les mesures dans des applications particulières. La définition d'un doigt de gant ne se fait pas à la légère: elle impose de réaliser des calculs de résistance de matériau et de stress pour éviter une éventuelle rupture et de s'assurer que l'extrémité de la sonde sera toujours en contact avec le fond du doigt de gant, quelles que soient les conditions de service.
L'essentiel
Les mesures de température dans les process font très souvent intervenir des puits thermométriques dont le rôle est d'abord de protéger les sondes. Depuis 1974, un document ASME définit les meilleures pratiques de conception de ces doigts de gant… avec des résultats plus ou moins probants. Une nouvelle version de la norme (ASME PTC 19.3TW-2010) a été finalisée il y a un an et demi, les principales améliorations portant sur un calcul amélioré des fréquences propres, la prise en compte de l'effet des vibrations en ligne… |
Dans les procédés industriels, les sondes de température sont très souvent associées à des puits thermométriques, dont le rôle est de protéger les éléments sensibles du fluide àcontrôler et/ou des conditions de service. Pour concevoir les puits, les utilisateurs doivent respecter les meilleures pratiques regroupées dans un document de l'ASME.
Photos et illustrations : Emerson Process ManagementEn plus de leurs rôles de protection des sondes de température et d'accès simplifié et rapide à ces dernières, les doigts de gant sont en effet des éléments essentiels dans la sécurité d'un process. Si un puits thermométrique casse dans une canalisation où circule un gaz mis sous une pression de 50 bar, il peut non seulement endommager le reste de l'installation en aval, mais aussi provoquer une remontée du gaz jusque dans les armoires, avec là encore le risque de mettre en danger le personnel intervenant à proximité. Le cylindre droit qu'est un doigt de gant soudé, monté par brides ou par filetage dans une canalisation est assimilé à une poutre encastrée d'un point de vue de la résistance des matériaux.
Lorsqu'un fluide s'écoule de part et d'autre du puits thermométrique, des tourbillons à faible dépression sont créés en aval selon des régimes laminaires et turbulents. Les oscillations dynamiques latérales du puits provoquées par ces tourbillons alternés et les contraintes statiques en ligne générées par l'écoulement du fluide (flexion du puits) sont à la source de défauts mécaniques potentiels liés à la fatigue du puits. Sachant par ailleurs que les vitesses d'écoulement mises en œuvre dans les procédés ont tendance à s'accroître pour des raisons d'augmentation de la productivité, entre autres.
Développement de l'ASME PTC 19.3-1974
Pour ceux qui se souviennent de leur cours de résistance des matériaux, il existe des calculs assez simples, mais incomplets dans le cas qui nous intéresse ici à savoir déterminer la fréquence d'oscillation propre d'une poutre encastrée. C'est sur ce principe que la norme ASME PTC 19.3-1974 a été développée. En 1957, l'American Society of Mechanical Engineers (ASME) a décidé que le document utilisé à l'époque, et qui remontait aux alentours de 1930, n'était plus satisfaisant en raison de la non-prise en compte des effets thermiques et des contraintes. L'ASME a alors demandé à un comité indépendant de rédiger un document. Les bases de l'ASME PTC 19.3-1974 ont été un article de J.W. Murdock publié en 1959 et certains travaux menés par John Brock de la Naval Post Graduate School sur des points ignorés volontairement ou non par J.W. Murdock.
Il s'agissait de l'utilisation d'un nombre de Strouhal variable et non plus constant, de l'application de facteurs de montage dans l'approximation de la fréquence propre du puits thermométrique, et la révision du ratio de fréquence limite de 0,8 pour l'incertitude des calculs de fréquence propre, etc. Certains de ces points ont ainsi pu être améliorés par l'ASME PTC 19.3-1974 ;une fois approuvée et publiée, la norme est devenue le standard pour la conception des puits thermométriques de 1974 jusqu'à nos jours. Tous les types d'installations n'étaient néanmoins pas pris en compte comme l'a montré l'exemple de la centrale nucléaire de Monju (Japon). En décembre 1995,une fuite dans le système de refroidissement de sodium liquide, fuite liée à la rupture de fatigue d'un doigt de gant, a entraîné l'arrêt du réacteur surgénérateur à neutrons rapides. L'enquête a démontré que ce puits avait pourtant été conçu conformément à l'ASME PTC 19.3-1974, mais que la rupture était due à la résonance en ligne non prise en compte dans la norme.
Même si les entreprises peuvent utiliser des petits logiciels (pas vraiment fiables) pour avoir une idée du puits thermométrique, elles doivent se tourner vers le service de calculs du fabricant de doigts de gant pour la conception de doigts de gant précis et fiables.
De tels incidents ayant toutefois été assez rares, l'ASME PTC 19.3-1974 a été mise en œuvre avec succès dans la majorité des cas. Plusieurs facteurs importants ont néanmoins amené l'ASME à reformer le comité ad hoc en 1999, avec l'objectif de réécrire complètement la norme. Parmi ces facteurs, on trouve l'avancée dans la compréhension du comportement des puits thermométriques, les risques importants liés aux incidents comme celui de la centrale de Monju et l'utilisation accrue de l'analyse par éléments finis pour la modélisation des contraintes.L'ASME a également réalisé une étude dans laquelle sept constructeurs devaient concevoir chacun trente puits pour des conditions de process différentes, les mêmes pour chaque fabricant. Les résultats divergents s'expliquent par une interprétation personnelle qui amenait à des calculs mal faits.
Les applications à faible écoulement
Du côté des industriels, de nombreuses personnes ont voulu faire table rase des calculs simplifiés de l'ASME PTC 19.3-1974, au profit de méthodes avancées, pour la détermination de la fréquence propre d'un doigt de gant et de la fréquence réelle. Le comité a alors décidé de publier une nouvelle norme, compte tenu des modifications importantes et des efforts consentis, au lieu d'une simple mise à jour de la version existante. La nouvelle norme, référencée ASME PTC 19.3TW-2010, a été approuvée en février 2010 et publiée officiellement en juillet de la même année. Si la partie consacrée aux calculs de puits thermométriques ne représentait que quatre pages dans l'ASME PTC 19.3-1974, qui traite surtout des matériaux, elle représente désormais une quarantaine de pages dans la nouvelle version du fait des explications sur la théorie et la complexité d'accès aux informations de process. Il serait ici trop fastidieux de passer au crible l'ensemble des nouvelles recommandations, plus sévères, sur les calculs des puits thermométriques apportées par l'ASME PTC 19.3TW-2010. Intéressons-nous seulement à quelques-unes des améliorations clés concernant les meilleures pratiques de conception des puits thermométriques : l'amélioration du calcul de la fréquence propre des puits, l'ajout de géométriques supplémentaires de doigts de gant, la prise en compte de l'effet des vibrations en ligne…
Un puits thermométrique installé dans une canalisation peut être assimilé à une barre encastrée qui subit les forces suivantes induites par l'écoulement du fluide : les vibrations en ligne (parallèles à l'écoulement) et les vibrations transversales (perpendiculaires à l'écoulement et liées à l'effet Vortex).
Avant de passer au vif du sujet, éludons le cas des faibles débits.Dans ce cas précis,l'énergie transférée du fluide au puits n'est pas suffisante pour entraîner une rupture de fatigue. Il n'y a alors pas besoin de réaliser des calculs de limites de fréquence, si les conditions suivantes sont réunies: une vitesse du fluide de process inférieure à 0,64 m/s ;une épaisseur de tube supérieure ou égale à 9,55 mm ;une longueur inférieure ou égale à 0,61 m ; des diamètres à la base et à l'extrémité supérieurs ou égaux à 12,7 mm ; une contrainte admissible maximum supérieure ou égale à 69 MPa; et une limite d'endurance à la fatigue supérieure ou égale à 21 MPa. Même ainsi, de faibles vitesses d'écoulement peuvent encore exciter la résonance en ligne et causer la rupture de la sonde en raison de vibrations élevées à la fréquence de résonance. Si les critères précédents ne sont pas rencontrés,ou s'il y a un risque de contrainte par corrosion ou de friabilité des matériaux à cause d'une interaction avec le fluide (qui causerait une modification de l'endurance à la fatigue), le concepteur doit évaluer complètement le design du puits.
Prendre en compte un nombre de Strouhal variable
Avec la versionASME PTC 19.3TW-2010, les concepteurs peuvent (enfin) prendre en compte un nombre de Strouhal variable, et non plus fixe… même si de nombreuses personnes dans l'industrie avaient déjà commencé à l'intégrer dans les calculs.Rappelons que, dans le cadre des mécanismes de circulation oscillante, le nombre de Strouhal (1) , qui est fonction de la fréquence d'émission des tourbillons, de la longueur caractéristique et de l'inverse de la vitesse d'écoulement non perturbé a une influence sur le calcul de la fréquence de résonance du puits (sa valeur peut atteindre 0,5). Dans le cas où le sillage généré en aval de l'obstacle prend la forme de tourbillons alternés ( voir encadré page 55 ), le nombre de Strouhal est alors fonction du nombre de Reynolds.
Dans n'importe quel écoulement entièrement immergé, le nombre de Reynolds est le rapport entre les forces inertielles et de viscosité. L'échelle de longueur du nombre de Reynolds est la largeur des tourbillons alternés et, dans le cas qui nous intéresse, c'est le diamètre de l'extrémité du puits thermométrique. Selon des études expérimentales portant sur des cylindres usinés droits et coniques, dont les formes étaient similaires à celles des puits thermométriques, le comité a décidé d'intégrer le nombre de Strouhal variable défini par la courbe obtenue avec un cylindre rugueux (le nombre de Strouhal est en effet lié à l'état de surface Ra du puits). Pour simplifier leurs calculs, et en particulier s'ils ne peuvent pas établir la viscosité dynamique ou cinématique du fluide pour déterminer le nombre de Reynolds, les concepteurs sont autorisés à approximer d'une manière prudente le nombre de Strouhal à 0,22.
Ce graphe montre l'amplitude des vibrations induites par le fluide sur un puits en fonction de la vitesse d'écoulement du fluide. Pour diverses raisons, une marge de sécurité a été définie, ce qui se traduit par l'application d'un coefficient entre fréquences réelle et de résonance : 0,4 pour les liquides ou les gaz denses et 0,8 pour les gaz.
Après avoir créé en 1974 une première norme, encore en vigueur il y a moins de deux ans, le comité ad hoc a repensé et publié une nouvelle norme, référencée ASME PTC 19.3TW-2010. Il s'agissait avant tout d'améliorer les calculs de stress et de rendre les doigts de gant plus “robustes”.
Comme on l'a dit précédemment, l'amélio-ration du nombre de Strouhal bénéficie au calcul de la fréquence propre du puits thermométrique. L'ASME PTC 19.3TW-2010 modélise les puits comme une barre simple et applique une série de facteurs de correction pour prendre en compte les différences par rapport à une barre idéale, comme la masse du fluide ajoutée, la masse du capteur ajoutée, une barre de profil non uniforme et la conformité de montage. Une fois tous les facteurs de correction appliqués,la fréquence propre in situ , ou installée, f pc est calculée pour être utilisée dans la suite de l'analyse de fréquence. Pour les puits à épaulement, les calculs sont plus complexes à cause de la géométrie proprement dite et des multiples points de concentration de contraintes. C'est pour cela que l'ASME PTC 19.3TW-2010 restreint le nombre de variations de dimension pour ces puits dans le champ d'application de la norme.
Une fois que la fréquence propre a été déterminée, le concepteur a besoin de comparer la fréquence de Strouhal à celle de résonance propre du puits, et ainsi être en mesure d'optimiser la marge de sécurité entre les fréquences. Il y a en fait deux modes d'excitation d'un puits ( voir figure 1 ): les forces transversales correspondent à des vibrations perpendiculaires à l'écoulement, et les forces en ligne mettent en vibration le puits selon un mouvement parallèle à l'écoulement. La fréquence de vibration en ligne est deux fois plus importante que la vibration transversale causée par l'effetVortex; la vibration en ligne atteint la fréquence de résonance à la moitié de la vitesse d'écoulement du fluide (“vitesse critique” à laquelle la fréquence de Strouhal est égale à celle de résonance) correspondant aux vibrations transversales. Cela se produit surtout avec les liquides en raison d'une densité plus élevée. Rappelons que les vibrations en ligne n'étaient pas prises en compte dans l'ASME PTC 19.3-1974, seulement les contraintes de flexion en régime établi.
Amélioration de la fréquence propre des puits
Lorsque la fréquence liée aux tourbillons varie d'une manière proportionnelle à la vitesse d'écoulement du fluide, le puits thermométrique entre très facilement en résonance. Et il faut alors un changement important de la vitesse pour que le puits s'éloigne de cette situation.Si,en plus,l'amortissement du puits est très faible, il est essentiel de rester en dehors de la fréquence de résonance propre du puits car forces et déplacements sont, dans ce cas précis, grandement amplifiés. C'est l'une des raisons pour laquelle une marge de sécurité de 20% a été définie, ce qui se traduit par l'application d'un coefficient entre la fréquence réelle et la fréquence de résonance: ftourbillions <0,8xf pc .Ils'agit également de prendre en compte une grande variabilité liée à la non-linéarité de la réponse élastique du doigt de gant, à la perte des tolérances de fabrication du puits thermométrique et aux informations sur la propriété des matériaux établies à seulement trois chiffres significatifs, ainsi qu'aux variations mineures du débit, de la température, de la densité et/ou de la viscosité dans le process.
Dans le cas d'un régime établi, il est possible de prendre en compte deux coefficients différents selon la nature du fluide ( voir figure 2 ) : f tourbillons < 0,4 x f pc ,pour les liquides ou les gaz denses (très comprimés, chargés de vapeur ou de poussières, par exemple), et 0,6 x f pc < f tourbillons < 0,8 x f pc, pour les gaz. A l'avenir, il sera même envisageable de dire combien de fois on aura passé la zone à mi-écoulement (lors du démarrage, de l'arrêt ou de n'importe quel autre fonctionnement rare du process, par exemple). L'ASME PTC 19.3TW-2010 contient également une disposition pour un fonctionnement “supercritique” où le puits thermométrique est utilisé au-dessus de sa fréquence propre. Il est toutefois fortement déconseillé d'utiliser les doigts de gant dans cette région.
En plus de la conception générique de doigts de gant coniques et droits (à droite, l'ASME PTC 19.3TW-2010 prend désormais également en compte les géométries de puits à épaulement (à gauche), et définit chaque composant d'un puits pour le calcul (rayon des arrondis, diamètre d'alésage, épaisseur de l'extrémité…).
A côté de la correction par rapport à une barre non idéale, de la réduction du coefficient entre fréquences réelle et de résonance et de l'ajout de la densité du fluide, d'autres aspects ont par ailleurs été pris en compte afin d'améliorer significativement les équations de calcul de la fréquence propre des puits thermométriques, en fournissant des fréquences propres plus proches de la réalité. On peut notamment citer l'ajout du poids du capteur, l'utilisation du nombre de Scruton, des facteurs de correction en fonction du type de montage (filetés, soudés ou bridé). Les concepteurs de doigts de gant sont ainsi en mesure de traiter de façon plus précise et prudente les puits thermométriques.
La nouveauté, au niveau des calculs dans l'ASME PTC 19.3TW-2010, est l'apparition du nombre de Scruton. Ce nombre représente l'amortissement intrinsèque du puits ; il est lié à l'élasticité de l'acier dans lequel le puits est fabriqué, son diamètre interne, l'épaisseur des parois et celle du fond. Le comité a adopté une perspective très prudente en définissant un facteur d'amortissement à 0,0005, à moins qu'il ne soit déjà défini. Un nombre de Scruton faible, à savoir inférieur à 2,5, signifie qu'il n'y a pas d'amortissement intrinsèque et que le puits doit être évalué à la fréquence de résonance en ligne, loin de la fréquence transversale. Quand le nombre de Scruton augmente, le niveau d'amortissement intrinsèque augmente, ce qui réduit la flexion et donc les contraintes. Un amortissement suffisamment élevé permettra au doigt de gant de fonctionner en ligne et peut-être même à la fréquence de résonance transversale. Si les conditions sont telles que le puits doive fonctionner au-dessus de la fréquence propre, des fréquences de résonance d'ordres supérieurs devront être prises en compte. La nouvelle norme ne fournit toutefois aucuns conseils et il est fortement déconseillé d'utiliser les puits dans cette région.
Des géométries de puits supplémentaires
On pourrait ainsi continuer à aborder l'évaluation des contraintes en ligne cycliques,des contraintes dynamiques ou en régime établi à la vitesse d'écoulement du process,ainsi que l'évaluation des contraintes liées à la pression et les données sur les matériaux utilisés. Mais cela pourrait devenir fastidieux pour les noninitiés. Terminons seulement sur l'ajout de géométries de puits supplémentaires pris en compte dans l'ASME PTC 19.3TW-2010. Alors que l'ancienne norme utilisait une conception générique de doigts de gant coniques et droits, la nouvelle inclut les puits à épaulement. Elle définit également chaque composant d'un puits pour le calcul, à savoir le rayon des arrondis, le diamètre d'alésage, l'épaisseur de l'extrémité, etc.A noter que les puits tubulaires sont exclus de la nouvelle norme et que les dimensions acceptables sont comprises entre 60 mm et 1 m.
Rappel sur le concept de tourbillons
Lorsqu'un fluide s'écoule autour d'un objet situé dans l'écoulement du fluide, des tourbillons se forment en aval de l'objet ; c'est ce que l'on appelle aussi tourbillons de Von Karman ( shedding en anglais). Les tourbillons sont des zones de dépression qui s'écoulent selon un motif alternatif, les dépressions produisant des forces et donc des contraintes alternatives sur l'objet. Les concepteurs de doigts de gant doivent donc faire en sorte d'éviter l'apparition de tourbillons afin de prévenir tout risque de rupture. Pour cela, les concepteurs doivent comprendre les phénomènes mis en jeu et déterminer la fréquence de ces tourbillons et la fréquence propre de leurs puits. Dès qu'apparaissent des tourbillons à n'importe quelle fréquence comprise entre 50 et 1500 Hz, le puits peut subir un grand nombre de cycles dans une courte période de temps. Lorsque la fréquence des tourbillons (également désignée fréquence de Stouhal) se rapproche de la fréquence propre du puits, le déplacement de l'extrémité et les contraintes sont grandement amplifiées et le puits peut casser à cause de la grande quantité d'énergie qu'il doit absorber. Donc, en plus des conditions de process, le concepteur doit prendre en compte une résistance à la fatigue polycyclique accrue pour une adéquation totale à l'application. |
Pour répondre aux exigences et contraintes du plus grand nombre d'applications, les puits thermométriques revêtent une multitude de formes : foré dans la masse ou mécanosoudé, en céramique, en métal ou en d'autres métaux, doigts de gant bridés, puits filetés ou soudés, doigts de gant partiellement protégés, etc.
Depuis que la nouvelle norme utilise une vitesse d'écoulement moyenne, il n'est également plus nécessaire de modéliser le profil de l'écoulement des conduites carrées ou de savoir de comment il pourrait différer de canalisations rondes. Le concepteur a simplement besoin de connaître le débit massique, la densité et la surface de la section perpendiculaire pour calculer la vitesse moyenne. La manière selon laquelle les puits thermométriques sont installés dans un process (installations “standard” telles que les puits bridés, filetés, soudés ou les doigts de gant partiellement protégés) peut par ailleurs avoir une influence significative sur les calculs de stress subi par le doigt de gant. Avec l'ASME PTC 19.3TW-2010, les concepteurs peuvent travailler sur des puits montés à 30° ou dans un coude… même si la norme ne donne aucun conseil ou reste très prudente dans les faits.
Dans le cas des puits partiellement protégés, l'effet de la protection sur un doigt de gant conique est facile à prédire mais l'effet sur un puits à épaulement est bien plus difficile à modéliser parce que la surface exposée n'est entre autres pas un profil variant d'une manière uniforme. La norme préconise alors de réaliser deux évaluations des contraintes pour les puits à épaulement protégés, l'une à la base du puits et la seconde au niveau de l'épaulement. Toujours en ce qui concerne l'installation des puits thermométriques, la nouvelle norme aborde l'utilisation d'embases de butée ( collars en anglais; ajout d'une masse lorsque l'on ne parvient pas à faire un calcul de stress) en établissant qu'elles ne sont pas recommandées en tant que supports rigides servant à raccourcir la longueur d'un puits –cela ne peut être réalisé que par la mise en place d'un ajustement serré.
La raison est la suivante: les déplacements de l'extrémité du puits sont généralement très faibles (inférieurs à 0,5 mm) et le moindre espace entre l'embase de butée et le diamètre intérieur de la canalisation rendrait celle-ci inefficace à réduire la longueur effective. De surcroît, à l'instar d'un marteau frappant d'une manière répétée sur la surface d'un métal, le doigt de gant ou la canalisation continuerait alors à se déformer et l'espace s'agrandirait jusqu'à ce qu'il n'y ait plus du tout de contact. D'où une concentration de contraintes dans le puits, voire la rupture des soudures proches de l'embase de butée. Il est plutôt recommandé de modifier la géométrie du puits ou d'utiliser un autre montage pour répondre aux conditions de process plutôt que de recours à des embases de butée.
En conclusion, on peut affirmer que la norme ASME PTC 19.3TW-2010 fournit désormais des restrictions très claires, applicables ou non applicables concernant la conception des puits thermométriques. Après dix années de travail, il est possible d'aller encore plus loin. Parmi les travaux encore et qui pourraient aboutir dans les années à venir, on peut citer la prise en compte des aspects de corrosion et d'érosion dans les calculs, le développement d'un logiciel d'optimisation de la position des doigts de gant dans les procédés, la mise au point d'un document au niveau du site…
Basé sur un white paper écrit par Dirk Bauschke, Engineering Manager, DavidWiklund, Senior Principal Engineer ,Andrew Dierker, Mechanical Project Engineer, et Alex Cecchini, Senior Marketing Engineer , chez Emerson Process Management. (1) Définition tirée de fr.wikipedia.org